Noname manuscript No.
(will be inserted by the editor)

Widget Identification: A High-Level Approach to
Accessibility

Alex Q. Chen : Simon Harper : Darren
Lunn - Andrew Brown

Received: date / Accepted: date

Abstract The Web 2.0 sees once static pages evolve into hybrid applications,
and content that was previously simple, now becoming increasingly compli-
cated due to the many updating components located throughout the page.
While beneficial for some users, these components (widgets) are often com-
plex and will lead to confusion and frustration for others, notably those for
whom accessibility is already an issue. While users and developers often per-
ceive widgets as complete components (a Slideshow, or an Auto Suggest List),
they are in-fact heterogeneous collections of code, and are therefore hard to
computationally identify. Identification is critical if we wish to reverse engi-
neer inaccessible widgets or ‘inject’ missing ‘WAI-ARIA’ into ‘RIAS’. In this
case, we introduce a technique that analyses the code associated with a Web
page to identify widgets using combinations of code constructs which enable
uniquely identification. We go on to technically evaluate our approach with
the most difficult widgets to distinguish between — Slideshows and Carousels —
and then describe two prototype applications for visually impaired and older
users by means of example.

Keywords Web 2.0 - Widget Identification - Widget Classification -
Disabilities - Ageing

Alex Qiang Chen

School of Computer Science, Information Management Group, The University of Manch-
ester, Kilburn Building, Oxford Road, Manchester M13 9P, UK

E-mail: chenqa@cs.manchester.ac.uk

Simon Harper
E-mail: simon.harper@manchester.ac.uk

Darren Lunn
E-mail: darren.lunn@cs.manchester.ac.uk

Andrew Brown
E-mail: andrew.brown@cs.manchester.ac.uk

2 Alex Q. Chen et al.

1 Introduction

The World Wide Web (Web) is undergoing a profound change from version
1.0 to version 2.0. There is no precise definition of what this new Web is, but
it has an emphasis on interaction, community, and the active contribution of
users; while at a technical level it is generally accepted that Web 2.0 technolo-
gies are based around Asynchronous JavaScript and XML (AJAX) and now
HTMLS5 technologies. Components, called widgets, built from these technolo-
gies enable small sections of the page to be updated as opposed to requiring
a full page refresh, are extensively used in Web 2.0 sites. While this can pro-
vide a richer Web experience for a majority of users, for some the addition
of dynamic content can be problematic. For users who are not familiar with
Web concepts, or for those who require assistive technologies to access Web
content, the increased complexity can prove to be a hindrance that detracts
from the benefits that the Web can provide.

The shift in the way the Web works come with a corresponding increase
in the cognitive load required to understand and interact with it [26]. This
additional load can produce lower performance and higher levels of frustration
which negatively effect both work and social activity, especially for those users
that may not be experienced with using the Web or may require assistive tech-
nologies to access Web content, as discussed in §2. Older users, for example,
experience a heightened cautiousness and a hesitancy about making responses
that may be incorrect [22], while users with visually impairments often receive
insufficient or inappropriate feedback from screen readers [3].

One approach to support such users is to provide tools that will assist
them as they interact with Web 2.0 content. However, before such tools can
provide meaningful functionality, the type of content delivery method used by
the developer must first be identified from the content in the page. In this
paper, we present a technique that analyses the combinations of tell-signs’
to identify the types of widgets that are present in the page. §3 describes
how these widgets can be formally classified using an ontology that matches
tell-signs to characterise the high-level widgets that users interact with.

Next we ascertain the most popular widgets and their extent (see §4) arriv-
ing at nine distinct instances. We continue §5 by describing the identification
process for just the ‘Carousel’ and ‘Slideshow’ as these posses similar proper-
ties and are therefore the hardest to reliably identify. A technical evaluation
of the method is provided in §6. By using such identification techniques, pro-
totype tools (see §7) are being developed that assist both visually impaired
and older Web users as they interact with Web 2.0 content.

1 Tell-signs are the attributes or properties of a widget, or its component parts, that
indicate the presence of that widget on a page. The term originates from hunting, where a
tell-sign (e.g., tracks) indicates the presence of the quarry.

Widget Identification: A High-Level Approach to Accessibility 3

2 Related Work

Studies have demonstrated that dynamic content attracts a user’s attention
more than static content [5]. However, Web 2.0 pages often have multiple areas
of dynamic content. When users are faced with differing types of content, they
have difficulty in dividing their attention between the elements to complete
tasks effectively [24]. This additional load is a major problem for an ageing
population of knowledge workers expected to work longer into old age. The
general effects of ageing include changes in attention, cognition and behaviour,
all of which affect how people use the Web [16]. Studies have shown that
elderly Web users experience a heightened cautiousness and a hesitancy about
making responses that may be incorrect [20][22]. In addition, elderly users
show difficulty in maintaining attention, focus, and concentration on tasks
where there is a lot of distracting information [18].

For visually impaired users, advancements in content delivery raise many
new issues previously not seen [15]. These people often use assistive tech-
nologies, such as screen readers, to access Web content [1], but a review of
how users of different assistive technologies deal with dynamically updating
pages [2] showed that older browser/screen reader combinations did not re-
spond to some updates, in particular those which occurred automatically. Even
newer technologies often did not notify the user that the page had changed.

One approach to the problem of accessibility is to semantically annotate
widgets so that tools can identify what content is present in the page and
the role of that content. To achieve this annotation, the World Wide Web
Consortium (W3C) Web Accessibility Initiative (WAI) has developed Accessi-
ble Rich Internet Applications (WAI-ARIA) [10]. WAI-ARIA is a mechanism
that allows developers to enhance the accessibility of rich content contained
within their Website by defining the roles, states, and properties of interactive
elements contained within the page [25]. The annotations allow the roles of
components to be made more explicit, and enable controls to be related to the
content they change. While this approach has merit, from the perspective of
people using the Web today, it suffers from two flaws. The first is the limited
use of markup on new and existing sites; the second is that WAI-ARIA is gen-
erally concerned with making the components accessible, and appears to be
less well suited for helping users understand widgets as coherent objects. Our
approach aims to provide a solution that may work in tandem with WAI-ARIA
to address both of these limitations by using code analysis to automatically
identify widgets, thereby enabling them to be presented holistically.

There have been limited previous attempts at automatic widget detection.
Miyashita et al. [23] developed a method of making media players accessible
by identifying interface components such as play and stop buttons, and the
volume slider. While this approach was sufficient for Media Players, we assert
that it is difficult to apply as a general solution to widget accessibility. Many
widgets share common interface parts, such as a next button, that have similar
functionality but when viewed in the context of the content area, have different
meanings to the users. Approaches to identify dynamic content using Pixel-

4 Alex Q. Chen et al.

based methods [11] offers an alternative approach, but without interpreting
the widget’s processes this may result in detection ambiguity as reported in
[6], and cause false expectation to their user.

Indeed, it is at a high-level content area that many developers and users
perceive widgets: as a coherent region of controls and content grouped by visual
association. When developing a widget, design patterns help developers to
formulate the widget by using the correct combination of component parts [14].
Studies have demonstrated that design patterns can be detected from the
source code using code comprehension techniques to automatically identify
the nature of the component [13][12]. However when attempting to locate
widgets within a Web page, these techniques can fail due to the diverse range
of development technologies on the Web [6].

While previous accessibility solutions have so far concentrated on the in-
terface components [23], we aim to detect and present widgets at a higher
level. Our approach, therefore, is to automatically detect widgets using code
comprehension techniques to search for the particular combinations of compo-
nents and their properties that characterise widgets, to identify what dynamic
content is present on the page. By combining both the high-level nature and
the components of widgets, we assert that richer information can be relayed
to the user while still maintaining the ability to have fine-grained control over
the component.

3 Widget Classification

As a first step towards supporting users when they interact with Web 2.0
content, a method to automatically identify widgets that are present on the
page was developed. This technique allows subsequent tools, designed for a
variety of user groups, to be able to target assistance and provide support for
those widgets currently displayed to the user.

A widget is a coherent unit of content contained within a Web page that
users can interact with. Figure 1 shows an example of a Slideshow widget. This
widget organises a list of content to display a limited number of items at a
time in the Display Window?. The Slideshow widget has a set of controls that
allows the user to browse through the list at their own pace. In this example,
the user can use the Previous and Next buttons to skip through the content,
or use the Pause/Play button to enable the widget to display the content
automatically, with a small delay between each set of displaying items.

While users view widgets as a high-level object, they are derived from a
set of components. Figure 2 shows how these components are combined to
create a high-level Carousel widget. What users consider to be a Carousel is
composed of three components — a Previous Button, a Nexzt Button, and a
Display Window — each of which allows the user to perceive and interact with
the content on the page. In a similar fashion, the components that make up

2 The Display Window is an area in the Web page that is part of the widget where content
is presented to the user.

Widget Identification: A High-Level Approach to Accessibility 5

StyleL st Style and the city: Stars \
| step out at NYC ball I

See the red carpet hits and misses from
last night's Met Costume Institute Gala

And Jude and Sienna were there, too
Reunited couple go public at last: Pic

Hot or not? Latest celeb looks I
» Catherine Zeta-Jones is pretty in pink
= Coleen Rooney unveils Argos range !
N R, o o o e
» Pics: Jessica Simpsogand Scarlett Johannson go glam 4/8 n m u
Display Previous / NTt
Window button ex
button
Pause/Play
button

Fig. 1 Illustration of the components a Slideshow widget possesses that users can interact
with using the given set of controls.

widgets have a series of properties that provide the functionality that users
interact with. In Figure 2 for example, a Next Button has an Incremental
Property which is used by the underlying control mechanism to display the
next set of content in the list to the user.

Tell-signs are the properties of the components that, when combined, pro-
vide an indication that a widget is present in the Web page. By identifying
tell-signs from the underlying code, it is then possible to see what combina-
tions of components co-exist in order to determine the widgets that are present
in the page.

Problems can arise when widgets share common features. Consider the
Slideshow and the Carousel widgets shown in figures 1 and 2 respectively.
Both widgets deliver content in a sequential fashion with only a limited num-
ber of items displayed to the user at a time. The user can browse through
the list of content by using a set of controls, such as the Previous and Next
buttons. However, a Carousel allows the user to loop around the list of con-
tent endlessly in bi-direction, while a Slideshow does not. Often, a Slideshow
even provide additional functionality whereby the user can force the widget to
display content automatically through the use of the Pause/Play button. The
subtle differences between widgets means that they can be classified differently
based on individual points-of-view, experiences, and how the widget is applied
[14]. As we have seen, a Slideshow has common functionality to a Carousel

6 Alex Q. Chen et al.

My Stuff

Previous Display Next
button Window button
- Decremental - Display Pointer property - Incremental
property property
- Scrolling property
- Display Pointer - Display Pointer
property - List of Content property property

Fig. 2 Example of the components and properties that are combined to create a Carousel
widget.

leading to some developers using the two names interchangeably, and users of
these types of widget to have different expectations.

In this case, we created an ontology that formally defined the components
a widget is composed of, and the properties that a component consisted of. By
creating a formal classification system, widgets are identified by the processes it
does and the actions that users performed, rather than an informal name used
by developers. Such a classification system reduces any definition ambiguity
and misinterpretations of widgets that may arise due to different designers
having differing views of what a widget should be called. By formalising what
a widget is, inconsistencies in operation between accessibility tools are reduced
as tools are able to explicitly identify what widgets are on the page, and the
components necessary for the users to interact with the widget.

To develop the widget ontology, design pattern libraries (such as Yahoo!
Design Pattern Library® and Welie*) were utilised to identify common widget
development practices that use combinations of components. Once the tell-
signs and their properties had been derived for a widget, the ontology could
be used as a basis for determining the presence or absence of a widget in a
Web page.

A cursory examination of our Widget Identification Ontology® (using say,
the Protégé tool) we can see how two widgets with very similar character-

3 Yahoo! Developer Network: Design Pattern Library — http://developer.yahoo.com/
ypatterns/

4 Welie.com: Patterns in Interaction Design — http://welie.com/patterns/

5 http://wel-eprints.cs.manchester.ac.uk/136/

Widget Identification: A High-Level Approach to Accessibility 7

istics can be differentiated based on their user interaction components and
processes characteristics. Not only can the ontology allow these differences to
be explicitly stated, but it is flexible enough to allow more tell-signs to be
included that define more widgets. Existing tell-signs can also be modified to
suit the evolution of widget’s design. The ontology provides developers with a
medium to communicate their concepts and definition of a widget, minimising
misinterpretations of a widget, and reducing the need to reinvent similar types
of widget. These definitions can then be used to identify instances of widgets
that are present on a given Web page.

4 Widget Properties and Extent

To ascertain the most popular widgets and their extent we conducted a manual
census of the Alexa top 50 English language website. We then identified dif-
ferent widgets using our ontology and countered the instances of each widget.
This census gave us nine distinct widgets which we assert are good indicators
of the kinds of widgets used over the entire AJAX coded Web - rationalising
that modern AJAX technology will be most systematically used in the highest
visibility websites.

1) Auto Suggest List widget Provides the user with a list suggested phases
identified from the characters entered in a text field. Found in 52% of sites.
Tell-signs: Monitors a text field for a change; Updates the Display window
of the widget; Polling for whether the up or down key was pressed; Auto
Complete attribute of the text element is set to off.

2) Popup Content widget Provides a floating area for content to be displayed
above the rest of the page. Found in 50% of sites. Tell-signs: Set Display
Window’s z-index style value to > or <than 0; Triggered by an user or
window event; Make Display Window appear or disappear.

3) Tabs widget Generally used to breakup content into multiple sections stacked
together, so that the desired section can be displayed when requested by
the user without refreshing the page. Found in 46% of sites. Tell-signs:
Triggered by an user event; Make selected content appear and the rest in
the list to disappear.

4) Carousel widget Presents user with a list of content, so that they can scroll
through the different content in the list. This widget loops around the list
of content in bi-direction. Found in 30% of sites. Tell-signs: Must have a
next and a previous button; Make sure that the content will loop around
to the first item when the last item in the list is reached, and vice-versa.

5) Collapsible Panels widget Allow users to hide irrelevant content and show
the content of interest. Found in 20% of sites. Tell-signs: Triggered by an
user event; Make Display Window appear or disappear.

6) Slideshow widget Presents the user with a list of content, so that they can
scroll through the different content in the list, but do not allow the user to
loop around the list. Found in 14% of sites. Tell-signs: Must have a next
and a previous button; Make sure that the content do not loop around to

8 Alex Q. Chen et al.

the first item when the last item in the list is reached and vice-versa; Must
have a display pointer; Updates the Display window of the widget.

7) Ticker widget Presents user with a list of contents that will automatically
scroll through the different content in the list at a fix interval. This widget
loops around the content in a single direction. Found in 12% of sites. Tell-
signs: Must have a display pointer; Updates the Display window of the
widget; Uses a delay before the next item in the list is presented; Make
sure that the content will loop around to the first item when the last item
in the list is reached.

8) Popup Window widget A link or a form button that creates a pop up win-
dow. Found in 12% of sites. Tell-signs: Triggered by a user event on a
element; Executes JavaScript’s new window method — window.open(...).

9) Customisable Content widget This widget allows the user to customise con-
tent on a Web page. Unlike Collapsible Panels, this widget only allows the
user to remove irrelevant content from the page. Found in 10% of sites.
Tell-signs: Triggered by an user event; Make Display Window disappear.

We will continue by describing the identification process for just the ‘Carousel’
and ‘Slideshow’ as these posses similar properties and are therefore the hardest
to reliably identify.

5 Widgets Identification

As discussed previously in §3, combinations of components help to define a wid-
get. Similarly components themselves are combinations of different properties.
A fusion of bottom-up and top-down approaches was used to seek instances
of the widget’s properties (tell-signs) and determine if the widgets existed on
the Web page. Figure 3 illustrates the process used to gather tell-signs and
identify the widgets that were available to the Website [7].

The initial stage, indicated as (1), processes the Document Object Model
(DOM) of the Web page, in order to identify the locations of any HTML,
JavaScript, and Cascading Style Sheets (CSS) that may exist within the doc-
ument. Once the individual source code files have been identified they are sent
to the Code Synthesiser, indicated as (2). This stage assembled all the sepa-
rate code resources of the page into one large source file to enable the code to
be profiled. As Websites can call external files to enable code reuse, (2) also
involved accessing the Web to pull in any external resources and add them to
the single source file. The profiler, indicated as (3), creates a file which can be
thought of as being executed, in that instances of factory method’s concepts
and run-time code constructs are logged. The final stage of the process, indi-
cated as (@) involves systematically processing the combined HTML, profiled
JavaScript, and CSS code of the Web page to identify widgets that may exist
within it. This stage relied upon the Widget definitions that were formulated
in the Widget Identification Ontology. For each widget, the code was parsed

Widget Identification: A High-Level Approach to Accessibility 9

Widget Identification System

G Py o
HTML DOM Code L wen A
Parser Synthesiser Web ¥
//_7.\\ y S
Widget Code
Inferences Profiler
Widget
Ontology

Fig. 3 Widget identification system architecture

to identify the tell-signs that were used to compose that widget and determine
the presence or absence of the widget on the page.

As an example of the page analysis method, consider the Carousel widget,
shown previously in Figure 2 and defined in the ontology. When our system
receives the page from the Web browser, the DOM is parsed and any external
HTML, JavaScript, and CSS files are extracted. These are passed to (2) where
the code is concatenated together. It should be noted that concatenation oc-
curs only for the same code type. Therefore all CSS code is concatenated into
a single file and all JavaScript code is concatenated into a separate, single file.

Before analysing the code to identify widgets, documenting the concepts
and structures of the code will provide a directory of the code to assist widget
detection. A customized profiling module is used to build such a directory for
the JavaScript code to be analysed. This module provides a platform to assist
the code comprehension process when identifying widgets in 3 of Figure 3.

It is during (@ that the Carousel widget is determined by searching through
the information provided by (3). The Widget Inferences module attempts to
match for components that are defined in the Widget Ontology as being com-
posite parts of a Carousel Widget. In this case, instances of the next and
previous button are the key tell-signs. As these components are buttons, the
analyser looks for button-like elements. Buttons can be implemented in a num-
ber of styles, the analyser looks for all possible forms, which include:

Form elements
<input type="button"...>

<input type="submit"...>

10 Alex Q. Chen et al.

Anchor links with text

...
Anchor links with images

As Next and Previous buttons are interactive, they can trigger JavaScript
code through an event initiated by the user. In this case, the event will trigger
either an increment or decrement of the display pointer to update the cur-
rently displayed content. The triggering events from a mouse include onclick,
onmousedown, onmouseover, and onmouseup, and from a keyboard include onkeypress
and onkeydown. By following the handling function triggered by these events,
the fragment of JavaScript code that changes the Display Pointer value can be
identified. To differentiate between the Next and Previous buttons, key code
constructs are looked for. For example, variables with ++, or variables that are
assigned with a value from an addition, are chosen for further analysis for an
incremental process for the Next button, while variables with --, or variables
that are assigned with a value from a subtraction, will be chosen for further
analysis for a decremental process for the Previous button.

The Next and Previous buttons’ tell-signs can only be confirmed after the
Display Window tell-sign is determined. This is because there will be a large
number of candidates Next and Previous buttons, and a Carousel requires
all three coherent components. It is only by identifying all the tell-signs and
establishing the relationships between them that we can confirm the existence
of all components, and hence the widget. This interdependence means that
our process is iterative as we identify potential tell-signs for a given widget
and discard them as new evidence is discovered.

To identify Display Window, we search for a display pointer, as instances of
this functionality cause an update to the Display Window. A Display Pointer
will consist of two “tell-tale” signs: firstly, a Display Pointer will constantly
check to ensure that it refers to a location within the list of available con-
tent. When searching for instances that these conditions are checked in the
suspected section of code, the following regular expression is used to search
for the different patterns of this type of checks.

"/if\s*\ (\s* [\w\WI*\s* (==|<=|>=|>|<)?\s*" + possible[i]
+ "\sx(==]<=[>=|>]<) ?\s* [\w\W]*\s*\) /i"

The concatenated array variable within the regular expression, possible[il
stores the candidate Display Pointers variable identifier identified during the
analysis and filters out the less likely Display Pointer candidates. To ensure
that the pattern is not case sensitive, the modifier ‘i’ is included after ¢/’ at
the end of the regular expression.

Secondly, evidence to prove that the variable is used to point to a location
within a list is required. To cater for different variations of programming styles
and approaches, the following regular expression is employed to analyse for
these instances:

"/([-_0-9a-z]+)\[" + possible[i] + "\]/i"

Widget Identification: A High-Level Approach to Accessibility 11

As with before, the concatenated array variable possible[i] stores the re-
maining candidate Display Pointer variable identifier, while this search fur-
ther segregate the likely Display Pointer candidates. However, from this search
process, candidates for the list of content variable can be found too. This com-
bination of findings will lead to the discovery of a Display Window tell-sign.

To confirm that a Display Window has been identified, a final analysis oc-
curs to establish if the Display Pointer updates the DOM in order to display
content to the user. Based on anecdotal evidence, there are two popular ways
of updating the content in the Web page. The first method updates the content
that is currently stored in the DOM by changing the innerHTML property of an
element. The second method changes the styling properties of the content so
that it is either displayed (display="block") or hidden (display="none").
Other DOM mutation methods that facilitates updating the content, such as
different techniques to change the structure of the DOM tree, are not incorpo-
rated at this stage, because we are only evaluating our concepts and proving
its feasibility. It is beyond the scope of this paper to provide the regular ex-
pressions that can identify these updates, however the process used is similar
to those that was demonstrated previously.

Identifying widgets not only relies on identifying the presence of tell-signs,
but also the absence of tell-signs. As highlighted in §3, widgets can share
similar features, with the difference between a Carousel and a Slideshow being
the presence of absence of a looping feature. Using a similar process as above,
the code is analysed using a combination of DOM analysis and JavaScript
analysis to search for indications that a looping feature exists. For example a
common tell-sign for this feature is assigning the display pointer to either the
start or end of the list.

This final analysis of the code adds to the body of evidence that, when
combined, identifies widgets. Evidence of the existence of Next and Previous
buttons, and a Display Window, combined with the presence of a looping
feature allows us to conclude that a Carousel widget exists within the page.
This information can then be relayed to assistive technology in order to allow
users to interact with the widget. Examples of how this can be achieved are
provided in §7.

6 Evaluation

To establish the feasibility of our method, a technical evaluation was con-
ducted that sought to identify how accurate the approach was at identifying
widgets. Two types of widgets were chosen for the evaluation — Auto Suggest
Lists (ASLs) as they occur on more sites than any other widget and Carousels
as these are the most difficult to identify as they are often misidentified as
Slideshows. We are testing for how generalizable our widget detection algo-
rithm is. Carousel and Slide Shows are widgets with similar tell-signs; we
want widgets that are a distance from each other to avoid our algorithm to be
too specific.

12 Alex Q. Chen et al.

The evaluation dataset consisted of twenty Websites selected from Alexa’s
global top 500 sites and can be found in [8]. This is a separate set of data
used to test the accuracy of our algorithm to find the types of widgets used.
The previous dataset discussed in §4 is used to check for the popularity of
occurrence of the widgets. Both lists of Websites selected were taken at a
different time, so the first list of Websites is not the same as the evaluation
list. When choosing the data set a range of popular Websites were chosen so
that it gave a good representation of the Web based on the following requisite:

1. No repetition of a Website’s domain was allowed. For instance, google.
com.br was not used as it is a sub-domain of google. com.

2. If a repetition did exist, it was ignored and the next domain in the list was
examined.

3. Repeat step 1 and 2 until twenty Websites were selected.

The default page for each of the twenty websites was analysed automati-
cally, while the analyser returned either true or false to represent the presence
or absence of a particular widget. During the first iteration, the tool looked
for ASLs and for the second iteration the tool searched for Carousels. After
the automatic analysis was conducted, each page was inspected manually to
determine if the widgets had been accurately identified. For the ASL analysis,
the analyser identified all the ASL widgets that were present within the pages,
but also returned a false positive rate of 16%. Depending on size of a Web page,
the execution time of the script will vary; on average it was recorded 0.1707
seconds to detect an ASL. For Carousel analysis, the analyser identified all
the Carousels Widgets that were present within the pages, but also returned
a false positive rate of 10%. It should be noted that no false negatives were
returned during the automatic analysis, only false positives. On average, the
execution time for detecting a Carousel is 0.4145 seconds. Further investiga-
tions surrounding the false positive results highlighted that instances of these
widgets do exist within the page component’s library, however, they were not
used by the Web page. One can therefore consider these results to be accurate
on a Website level, but not on a page level.

Currently, we are investigating a method to address this issue by calcu-
lating the distance between the discovered components in the page’s DOM.
Through this investigation, we intend to locate where the widgets lie within
the page and return the XPath of the widgets location to DOM monitoring
tools. With this information, DOM monitoring tools can be aware of the live
regions where content may be updated. Our current approach identifies com-
ponents regardless their location in the DOM. By identifying components in
close proximity to each other we can assume that they are part of the same
widget and therefore false detection. Code optimisation for the individual wid-
get detection scripts are also investigated to improve their execution timings.

While more accurate definitions of widgets are being investigated to ensure
a higher successful detection rate, the current results show that the approach
is robust enough to use as a platform for developing assistive technologies.

Widget Identification: A High-Level Approach to Accessibility 13

7 Widget Identification Use Case

The techniques described in §3—5 have been used to develop two prototype
tools that assist users as they interact with dynamic content. These tools,
discussed below, provide older users and visually impaired users with improved
access to Web 2.0 content.

7.1 Supporting Older Users of Dynamic Web Content

As discussed in §2, during GSR studies to identify stress levels of older users,
Lunn and Harper [21] observed that unlike younger participants, there was
a large variance within the results for the older user groups and that there
were signs from some users of hesitancy and uncertainty when completing the
tasks. Based on these results, a prototype tool was developed to assist older
users as they interact with dynamic content. The tool is implemented as a Web
Browser extension to allow for rapid prototype development and also to allow
users to feel more comfortable. As [17] note, “users tend to prefer a standard
browser with the accessibility transformations added rather than a specialised
browser offering only a limited set of features (which would also tend to mark
them as being disabled).”

As the page loads, the browser executes code, based upon the work de-
scribed in §5, to establish if the page contains any dynamic content. If widgets
are present on the page, then an information icon is displayed on the browser
to allow users to receive help if they require assistance, indicated as (@) in
Figure 4. If users are comfortable with interacting with dynamic content, then
they can ignore the information icon.

The area indicated as (2) shows the panel that is displayed when the user
clicks on the assistance icon. A list of the widgets that have been detected
is displayed. In this case, three widgets were identified — Auto Suggest List,
Carousel, and Tab Box. The user clicks on those buttons to receive help if
they do not understand what content is present. In the example shown, the
user has clicked on the “Tab Box” button. This results in a short paragraph
appearing explaining what a tab box does along with a demonstration video.
As the video is being played, the widget on the page is highlighted in a pink
circle, indicated as (3). This is to ensure that users are aware of what part of
the page is being discussed in the demonstration video. While widgets have
similar functionality, they may have slightly difference appearance. The video
is designed to be as generic as possible and the pink highlight drawers the user’s
attention to the widget on the page that is being talked about. Participant
feedback and evaluation have been positive.

7.2 Supporting Visually Impaired Users of Dynamic Web Content

The second use-case for widget identification as an aid to accessibility explores
how identifying widgets as coherent high-level units, rather than low-level con-

14 Alex Q. Chen et al.

[Yahoo! UK & Ireland X\
€ > C M ¥ http://ukyahoo.com ">
" A
Page Information Web Images Video Local Shopping More @thowsb Qukony
This page has special content. Click the AI'IOO,’® ‘ Web search
buttons below to see how it works. UK & IRELAND
Auto Suggest List | i Yahoo! . Make Y1 your homepage Signin New here? Create my account | What are you doing? | Page
Carousel

MY FAVOURITES 4 Ada TODAY - 10 March, 2010 t Trending now SIse

; 1. Cheryl Col 6. James Bul
View Yahoo! Sttes o . ’yw fm , Kamesp uiger
. my Winehouse atie Price
Tab Box
_J Yahoo! Mall 3. Skydiving 8. Cinema listings
D) eec uk News ~ \ SN 4. Microsoft Courier 9. Northem Rock bo,
. / - 5. M5 10. Mothers Day ide...
V| eBay 7 of
Tab Box
Facebook ot H
A o widgt allows you to acess coreent [l B3 N LN personalised
from different locations without having to Finance (FTSE 100) Sarkozy and wife 'both having affairs' A reglstratluns
leave the current page. . President Nicolas Sarkozy and wife «Prico: My marriage i legal
@@ Flickr Carla Bruni are both having affairs, « Daly fighting for marriage’ which one would you choose?
- ‘according to online reports. »» More +Find a perfect date onine
@ s .
Click here to
0] et :
find your perfect
Movies ECl Vaichof theDay Proftfromthe 15 top things to
wion aftars [N ot for e number plate
(5] News
Lo . PLAY AGAIN »
Sport
o] — ardian | Telegraph | Wail
ay's deals
w3 esvero e cmaen
* 'Don't book Easter train travel', union warns Play Lotto online for \: Find out your ¢
Edit Add your chance to win. § score today.
+ Budget date fuels election speculation [\
e * Ex-MI5 head: US concealed torture
1 Travel « ihad Jane' charged over Europe terror plot
+ Gunmen attack Western aid agency In Pakistan; 5 dead Best Web experience? Yahoo! recommends Fireft
B sty sports « Half of Somalia food aid diverted: UN report - Speedier - Faster than ever to help ¥
G + EXtnct birds fate 1o be studied N\ get more out of the Net
* Acupuncture ‘useless’ for fertility * More secure - Better protection of yq
[15] Jamie Oiiver.com - Happy birthday to you: Hollywood 100 today privacy with new tools
o + Beckham braced for emotional homecoming - Fully customisable - More configurat|
ating
More: News Sports Entertainment than ever with new add-ons |
Quickviewon Rolover 2] Download Firefox
FTSE100:5,605.10 0.05% FTAS:2,865.20 0.10% Dow: 10,564.00 0.11%
GetQuotss.
YAHOO! SITES DO BUSINESS WITHYAHOO! &
- Arswers - Fickr - Movies - Y1 Intornatiral - Advertsowihus Ad Soutors v

Fig. 4 Interface for the Older User Widget Assistant.

trols, could benefit screen reader users. Eye-tracking studies of sighted users
have given insight into how these people interact with, and benefit from, dif-
ferent types of dynamic content [4][3], allowing development of rules for pre-
senting updates according to how they were initiated and their effect on the
page [19]. During evaluation of these rules [19] the nature of each of the test
pages, and their dynamic content, was explained to the blind and visually im-
paired participants. This was noted to be beneficial to the users, as it gave
them a more accurate mental model of how the interactions were likely to
work, and thus enable them to use the widgets more effectively.

Sighted users are able to scan a page, or a section of a page, rapidly, perceiv-
ing the content at a glance. Visual clues, such as borders and spacing enable
them to identify units within the page, and layout conventions help them to
recognise the type of widgets present. For example, the Yahoo! home page
contains an area with news content, organised into 4 sections, and presented
as tabs; clicking on the tab title changes the content (Figure 5). This section is
clearly separated from the surrounding content by spacing and a border, and
the tab titles are styled in such a way that most sighted users will recognise
the metaphor and understand how to interact with it.

The clues are, however, mostly implicit, so those people who wish to browse
these pages using a screen reader miss many or all of them, and are thus unable

Widget Identification: A High-Level Approach to Accessibility 15

M| couple 100,000 '8 | ruin your sleep

- » More Featured

In the New World \[ﬂ_,.[) Local | Finance

* Candidates vie for edge as Super Tuesday polls open | '08 race

= 24 Certain primary states hold keys to campaigns” momentum

= Mediators to meet with both sides of conflict in Chad | 24 rebels
= Congress regards Bush's budget as untenable | 24 Defense boost
= Oil prices drop on concerns about U.S. economy | 24 worries

= Hydrogen gas pulling Milky Way and other galaxies together

= 2 Court puts Spears’ father in charge of her welfare and fortune

= Super Bowl - NBA - NCAA Basketball - NHL - Soccer - MLB

More: Mews | Popular | Election "03

Markets: Dow: -0.8% Nasdag:-1.3% Spoensored by SCﬂﬂmdB

Fig. 5 Tabs on the Yahoo! home page.

to recognise the content. The visual differentiation is not available to them,
so it is not clear that they are navigating into a new region (that may be a
widget). The ability to glance over an area is also much diminished, so relating
components to each other is more difficult, particularly as the 2-dimensional
visual layout is translated into a 1-dimensional audio one. For these people,
therefore, who encounter a linear sequence of content and controls, un-grouped
and undifferentiated from surrounding content, it is very difficult to recognise
the form and function of a widget. Understanding its use is thus more difficult,
as is forming an expectation of the result of any action. Coupled with the lack
of information current screen readers provide when content changes, this adds
up to make using these widgets a demanding experience.

A prototype application is thus underway that will utilise the tell-sign
approach to widget recognition and apply it to making the presence of widgets
explicit to screen-reader users. This is being done in two ways: by inserting
text into the DOM so that the user is informed when entering or leaving a
widget, and by modifying the widget controls (for example AxsJAX [9]) so that
their effect will be more explicit. Although development is underway and user-
testing is yet to be performed, it is expected that these techniques will mean
that screen reader users will no longer have to interact with unrelated low-
level controls, but that they will be encounter widgets at a high-level, thereby
understanding better the function and effects of the low-level controls within.
This should lead to more confident and efficient use of dynamic content.

16 Alex Q. Chen et al.

8 Discussion and Future Work

While the initial results of the technical evaluation and the prototypes are
positive, there are a number of issues that need to be addressed before wide-
scale deployment can commence.

8.1 Interdependent and Optional Tell-Signs

As discussed in §3, widgets share common tell-signs that contain similar char-
acteristics and capabilities. Tell-signs can therefore be reused like objects in an
Object-Oriented programming language. However, there are certain character-
istics of tell-signs that may complicate the identification method. The first is
the interdependent tell-signs issue. Typically, tell-signs exist within the code
and are executed depending on what actions the user has performed. However,
some development techniques dynamically generate tell-signs as the user in-
teracts with the widgets. As an example, consider a form that assists the users
when entering data into it by guiding them through the form filling process.
One method of creating a form is to have all the form components present
in the page code and display only the necessary elements to the user as they
enter data. A second technique automatically generate the next section of the
form as the user completes each section, this time only the form elements that
are presented to the user is loaded in the code, and when the next section is
required, it will be loaded using remote scripting techniques. In this method,
only a limited number of tell-signs will be available during the initial analysis
and the remaining tell-signs are dependent upon certain aspects of code being
executed. In order to identify all the tell-signs, a method of virtually execut-
ing the code must be used in order to interpret the developers intention of the
process, establish what elements are generated and use the virtual execution
tell-signs as part of the widget identification.

The second issue is designers may consider tell-signs to be optional for
the functioning of high-level widget. In §3, the subtle differences between a
Carousel and a Slideshow were highlighted, with the defining factor being a
Carousel loops around the list of content. This was identified through the
presence of assigning the display pointer to the start or end of the list when
either ends of the list is reached respectively. However, some designers may
implement a Carousel but allow its users to stop or start the content from
automatically displaying. In this case additional tell-sign will be present dur-
ing the identification phase of the method. Our initial insight to this problem
suggest a probability based model to adapt our identification method for the
varied styles of developing them, and to include flexibility to cater for their
different characteristics. Each tell-sign will be allocated a value depending on
their importunateness, and whenever a tell-sign is discovered from our identifi-
cation process, its value is accumulated to form the identification probability.
Then, this value will facilitate the identification process to make a decision

Widget Identification: A High-Level Approach to Accessibility 17

whether the widget exist by comparing it with the threshold value allocated
to the widget.

8.2 Website Development Tool

The widget identification method, and subsequent prototype tools, has thus far
focused on assisting users as they interact with Web 2.0 pages. However, there
is scope for the Widget Identification method to be used in the development
phase when Websites are being designed. The first areas that could make use
of the method is the general usability of Websites. The ontological definitions
are based upon commonalities between widgets that are found on Websites. As
part of the development process, the Widget Identification Tool could check
the pages for widgets that are present and highlight any potential missing
components. For example, the Carousel with the looping feature missing, as
discussed previously. Users interact with Websites more effectively when they
follow a standard pattern. Therefore informing developers that their widgets
do not conform to expected interaction methods would allow them to make
suitable changes to their Websites and improve usability.

Secondly, the Widget Identification method could be used to improve ac-
cessibility. By identifying widgets that are present on the page, the tool could
suggest appropriate mark-up that should be added to the page in order to
improve accessibility. For example, an indication of the high-level widget that
is present would inform users of assistive technology what type of widget they
were interacting with. This, coupled with suitable WAI-ARIA mark-up would
then allow users of assistive technology to interact with the widgets on the
Website more effectively without the need for our tool running in the back-
end.

9 Conclusion

In this paper we have presented a novel method to automatically identify dy-
namic content that is present within a Web page. This process identifies wid-
gets as complete units of content, as perceived by the user, and the underlying
processes rather than as individual component parts as previous techniques
have done. The technique is based upon the identification of tell-signs and an
analysis of the combinations in which they occur to determine the presence or
absence of a particular widget within the page. As widgets share many com-
mon components, and as developers can use widget names interchangeably, an
ontology was developed to act as a classification system for defining widgets.
The classification was based on formal functionality and component parts of
the widget, rather than relying on developers’ perceptions of widgets based on
naming conventions. Such an approach allows for more formal identification of
widgets when the Web page is analysed for evidence that tell-signs of widgets
existed within the code.

18

Alex Q. Chen et al.

We have demonstrated how the Widget Detection Algorithm can be used

as the basis for developing tools that assist both visually impaired and older
Web users. We expect them to allow users to interact with dynamic content
more easily and provide a more enjoyable Web experience.

Acknowledgements This work was conducted as part of the Senior Citizens On The
Web 2.0 (SCWeb2) project, funded by The Leverhulme Trust(F/00 120/BL) and the Single
Structured Accessibility Stream for Web 2.0 Access Technologies (SASWAT) project, funded
by the UK EPSRC (EP/E062954/1).

References

10.

11.

12.

13.

Asakawa, C., Itoh, T.: User Interface of a Home Page Reader. In: ASSETS ’98: Proceed-
ings of the Third International ACM conference on Assistive technologies, pp. 149-156.
ACM (1998). DOI http://doi.acm.org/10.1145/274497.274526

Brown, A., Jay, C.: A Review of Assistive Technologies: Can Users Access Dynamically
Updating Information? SASWAT Technical Report 2, The University of Manchester,
School of Computer Science, UK (2008). DOI http://wel-eprints.cs.manchester.ac.uk/
70/. Http://wel-eprints.cs.manchester.ac.uk/70/

. Brown, A., Jay, C., Harper, S.: Audio Presentation of Auto-Suggest Lists. In: W4A ’09:

Proceedings of the 2009 International Cross-Disciplinary Conference on Web Accessibil-
ity (W4A), pp. 58-61. ACM (2009). DOI http://doi.acm.org/10.1145/1535654.1535667

. Brown, A., Jay, C., Harper, S.: Audio Access to Calendars. In: W4A 2010: Proceedings

of the 2010 International Cross-Disciplinary Conference on Web Accessibility (W4A).
ACM (2010)

Carmi, R., Itti, L.: Causal Saliency Effects During Natural Vision. In: ETRA ’06:
Proceedings of the 2006 Symposium on Eye Tracking Research & Applications, pp. 11—
18. ACM (2006). DOI http://doi.acm.org/10.1145/1117309.0410. URL http://portal.
acm.org/citation.cfm?id=1117309.0410

Chen, A.Q.: Widget identification and modification for web 2.0 access technologies
(WIMWAT). SIGACCESS Access. Comput. pp. 11-18 (2010). DOI http://doi.acm.
org/10.1145/1731849.1731851. URL http://doi.acm.org/10.1145/1731849.1731851
Chen, A.Q.: Profiling The Web Page’s Behaviour Layer. WIMWAT Technical Report 5,
The University of Manchester, School of Computer Science, UK (2011). Http://wel-
eprints.cs.manchester.ac.uk/135/

. Chen, A.Q., Harper, S.: Identifying Web Widgets. WIMWAT Technical Report 1,

The University of Manchester, School of Computer Science, UK (2009). DOI http:
/ /wel-eprints.cs.manchester.ac.uk/115/. Http://wel-eprints.cs.manchester.ac.uk/115/
Chen, C.L., Raman, T.V.: AxsJAX: a talking translation bot using google im: bringing
web-2.0 applications to life. In: Proceedings of the 2008 international cross-disciplinary
conference on Web accessibility (W4A), W4A 08, pp. 54-56. ACM, New York, NY, USA
(2008). DOI http://doi.acm.org/10.1145/1368044.1368056. URL http://doi.acm.org/
10.1145/1368044.1368056

Craig, J., Cooper, M., Pappas, L., Schwerdtfeger, R., Seeman, L.: Accessible Rich In-
ternet Applications (WAI-ARIA) 1.0. http://www.w3.org/TR/wai-aria/ (2009)
Dixon, M., Leventhal, D., Fogarty, J.: Content and hierarchy in pixel-based methods for
reverse engineering interface structure. In: Proceedings of the 2011 annual conference
on Human factors in computing systems, CHI 11, pp. 969-978. ACM, New York, NY,
USA (2011). DOI http://doi.acm.org/10.1145/1978942.1979086

Dong, J., Sun, Y., Zhao, Y.: Design pattern detection by template matching. In: SAC
’08: Proceedings of the 2008 ACM symposium on Applied computing, pp. 765-769.
ACM (2008)

Fukaya, K., Kubo, A., Washizaki, H., Fukazawa, Y.: Design pattern detection using
source code of before applying design patterns. In: 1st International Workshop on
Software Patterns and Quality (2007)

Widget Identification: A High-Level Approach to Accessibility 19

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley (1995)

Hailpern, J., Reid, L.G., Boardman, R., Annam, S.: Web 2.0: blind to an accessible new
world. In: WWW ’09: Proceedings of the 18th international conference on World wide
web, pp. 821-830. ACM (2009)

Hanson, V.L.: Age and Web Access: The Next Generation. In: W4A ’09: Proceedings
of the 2009 International Cross-Disciplinary Conference on Web Accessibility (W4A),
pp. 7-15. ACM (2009). DOI http://doi.acm.org/10.1145/1535654.1535658

Hanson, V.L., Richards, J.T.: Achieving a More Usable World Wide Web. Behaviour &
Information Technology 24(3), 231-246 (2005). DOI 10.1080,/01449290412331327465.
URL http://wuw.informaworld.com/10.1080/01449290412331327465

Hartley, A.A.: Attention. In: F.I. Craik, T.A. Salthouse (eds.) The Handbook of Aging
and Cognition, chap. 1, pp. 3-53. Laurence Erlbaum Associates (1992). ISBN: 0-8058-
0713-6

Jay, C., Brown, A., Harper, S.: Internal Evaluation of the SASWAT Audio Browser.
SASWAT Technical Report 6, The University of Manchester, School of Computer
Science, UK (2010). DOI http://wel-eprints.cs.manchester.ac.uk/125/. Http://wel-
eprints.cs.manchester.ac.uk/125/

Kurniawan, S., King, A., Evans, D., Blenkhorn, P.: Personalising Web Page Presenta-
tion for Older People. Interacting with Computers 18(3), 457-477 (2006). DOI DOI:10.
1016/j.intcom.2005.11.006. URL http://www.sciencedirect.com/science/article/
B6VOD-4HYMY31-6/2/0c620c176c9eed3ef2acc2d287de3e9a. Human Factors in Person-
alised Systems and Services

Lunn, D., Harper, S.: Using Galvanic Skin Response Measures To Identify Areas of
Frustration for Older Web 2.0 Users. In: W4A ’10: Proceedings of the 2010 International
Cross-Disciplinary Conference on Web Accessibility (W4A). ACM (2010)

Memmert, D.: The Effects of Eye Movements, Age, and Expertise on Inattentional
Blindness. Consciousness and Cognition 15(3), 620-627 (2006). DOI DOI:10.
1016/j.concog.2006.01.001. URL http://www.sciencedirect.com/science/article/
B6WD0-4J91R6C-1/2/764cb264eedae395b41d0a9cc7cb9ad9

Miyashita, H., Sato, D., Takagi, H., Asakawa, C.: Aibrowser for multimedia: introducing
multimedia content accessibility for visually impaired users. In: Assets ’07: Proceedings
of the 9th international ACM SIGACCESS conference on Computers and accessibility,
pp. 91-98. ACM (2007). DOI http://doi.acm.org/10.1145/1296843.1296860

Saenz, M., Buracas, G.T., Boynton, G.M.: Global Feature-Based Attention for Motion
and Color. Vision Research 43(6), 629 — 637 (2003). DOI DOI:10.1016/S0042-6989(02)
00595-3. URL http://www.sciencedirect.com/science/article/B6TOW-47XSSK6-1/2/
b540ce8624f967c247b3e30a4e2ad97f

Thiessen, P., Chen, C.: Ajax live regions: chat as a case example. In: W4A ’07: Pro-
ceedings of the 2007 International Cross-disciplinary Conference on Web accessibility
(W4A), pp. 7-14. ACM (2007)

Varakin, D.A., Levin, D.T.: Change Blindness and Visual Memory: Visual Representa-
tions Get Rich and Act Poor. British Journal of Psychology 97(1), 51-77 (2006). DOI
10.1348/000712605X68906. URL http://www.ingentaconnect.com/content/bpsoc/
bjp/2006/00000097/00000001/art00004

